Contents | List of Contributors | xiii | 4. API Solid-Form Screening and Selection M.Y. GOKHALE AND R.V. MANTRI | | |--|--|---|---| | THEORIES AND TECHNIQUES THE CHARACTERIZATION OF D SUBSTANCES AND EXCIPIENT | RUG | 4.1 Introduction 4.2 Solid-Form Selection Considerations 4.3 Screening Solid-Forms of API 4.4 Identification and Analysis of Forms 4.5 Conclusions 4.6 Case Studies References | 85
86
102
105
107
107
109 | | 1. Solubility of Pharmaceutical Solids | | 5. Drug Stability and Degradation Studies | | | R.V. MANTRI, R. SANGHVI, AND H.(J.) ZHU | | D. ZHOU, W.R. PORTER AND G.G.Z. ZHANG | GE AM | | 1.1 Introduction 1.2 Thermodynamics of Solutions 1.3 Theoretical Estimation of Solubility 1.4 Solubilization of Drug Candidates 1.5 Experimental Determination of Solubility References | 3
5
6
10
18
21 | 5.1 Introduction 5.2 Chemical Stability 5.3 Common Pathways of Drug Degradation 5.4 Experimental Approaches to Studying the Chemical Degradation of Drugs 5.5 Physical Stability and Phase Transformations 5.6 Phase Transformations During Pharmaceutical | 113
113
128
134
140 | | 2. Crystalline and Amorphous Solids G.G.Z. ZHANG AND D. ZHOU | | Processing References | 142
146 | | 2.1 Introduction 2.2 Definitions and Categorization of Solids 2.3 Thermodynamics and Phase Diagrams 2.4 Pharmaceutical Relevance and Implications 2.5 Transformations Among Solids 2.6 Methods of Generating Solids 2.7 Amorphous Drugs and Solid Dispersions 2.8 Special Topics References | 23
23
25
34
38
42
43
52
53 | 6. Excipient Compatibility and Functionality A.S. NARANG, R.V. MANTRI AND K.S. RAGHAVAN 6.1 Introduction 6.2 Excipient Functionality 6.3 Excipient Compatibility 6.4 Excipient Variability 6.5 Risk Assessment of Drug-Excipient Incompatibilities and Mitigation Strategies 6.6 Conclusions | 151
152
155
169
174
175 | | 3. Solid-State Characterization and Techniques | Pharms | References Total Spanish Mandar Danaghow J. DMAW. B. JUL J. | 175 | | D. LAW AND D. ZHOU | | 7 Polymor Proporties and Characterization | | | 3.1 Introduction 3.2 Microscopy Application and State Company | 59
60 | 7. Polymer Properties and Characterization | | | 3.3 Powder X-ray Diffraction3.4 Thermal Analysis | | 7.1 Introduction 7.2 Basic Concepts and Characterization of Polymeric | | | 3.5 Vibrational Spectroscopy | 72 | Materials | 185 | | 3.6 Moisture Sorption | 79 A | 7.3 Commonly Used Polymer Excipients in Solid Oral | | | 3.7 Hyphenated Techniques | 81 | hysicochemical Factors Affecting Drug Absorption 221 | | | 3.8 Conclusion References | | 7.4 Conclusion no reposed A. guit L. galacatt A. goros T. Isotypoloik | 220 | | References | 82 | References | 221 | | viii | CONT | TENTS | | |--|------------|---|------------| | 8. Interfacial Phenomena | | 12. Oral Drug Absorption: Evaluation and | | | E. HADJITTOFIS, S.C. DAS, G.G.Z. ZHANG AND J.Y.Y. HENG | | Prediction | | | | | Y. YANG, Y. ZHAO, A. YU, D. SUN AND L.X. YU | | | 8.1 Interfaces | 225 | 1. TANO, 1. ZHAO, A. TO, D. SUN AND L.X. YU | | | 8.2 Fundamental Intermolecular Forces | 226 | 12.1 Introduction | 33 | | 8.3 Thermodynamics of Particles in Electrolyte Solutions | 228 | 12.2 Anatomy and Physiology of the GI Tract | 33 | | 8.4 Surface Tension and Surface Energy8.5 Thermodynamics of Wetting | 229 | 12.3 Biopharmaceutics Classification System | 332 | | 8.6 Solid—Vapor Interface | 232 | 12.4 Intestinal Permeability Evaluation: Cultured Cells | 338 | | 8.7 Interfacial Phenomenon (Solid—Solid) | 236
241 | 12.5 Intestinal Permeability Evaluation: Ex Vivo | 342 | | 8.8 Future Directions—Opinions | 241 | 12.6 In Silico Methods | 346 | | References management and approximately 19. | 247 | 12.7 In Vivo Methods to Determine Oral Drug | eneral ex- | | maporo prin grando ario realizado (1) | 271 | Absorption | 34 | | DITAR OF DAYS OF THE SAME T | | 12.8 Food Effects on Drug Intestinal Absorption | 348 | | 9. Fundamental of Diffusion and Dissolution | | 12.9 Regional Drug Absorption Along GI
12.10 Future Trends | 350 | | Y. CHEN, J. WANG AND D.R. FLANAGAN | | 12.10 Future Frencis 12.11 Conclusions | 352 | | | | Disclaimer Disclaimer | 352
352 | | 9.1 Fundamental of Diffusion | 253 | References | 352 | | 9.2 Fundamentals of Dissolution | 262 | | 332 | | References | 270 | | | | | | 13 Dissolution Testing of Calif Day 1 | | | 10. Particle, Powder, and Compact | | 13. Dissolution Testing of Solid Products | | | | | Y. CHEN, Z. GAO AND J.Z. DUAN | | | Characterization | | 13.1 Introduction | 355 | | G.E. AMIDON, P.J. MEYER AND D.M. MUDIE | | 13.2 Theory of Dissolution Test for Solid Drug Products | 356 | | 10.1 Introduction | 271 | 13.3 Current Technology and Instrumentation for | 330 | | 10.2 Particle Size Characterization | 271 | Dissolution Testing | 358 | | 10.3 Powder Characterization | 276 | 13.4 Regulatory Considerations | 364 | | 10.4 Compact (Mechanical Property) Characterization | 281 | 13.5 Summary | 378 | | 10.5 Conclusions | 290 | References | 379 | | References | 290 | | | | Pass Transformations During Pharmaceurical | | | | | API: | | 14. Bioavailability and Bioequivalence | | | en.es | Relo | H. ZHU, B.V. LI, R.S. UPPOOR, M. MEHTA AND L.X. YU | | | BIOPHARMACEUTICAL | | 14.1 General Background | 201 | | AND PHARMACOKINETIC | | 14.2 Definitions and Key Concepts | 381 | | | | 14.3 General Components of BA and BE Studies | 382 | | EVALUATIONS OF DRUG | | 14.4 Data Analysis for BA and BE Studies | 384
387 | | MOLECULES AND DOSAGE FORM | S | 14.5 Special Topics for BA and BE Assessment | 389 | | 22. 132 | 1 (1.3) | 14.6 Biowaiver and BCS | 393 | | replem Compatibility | | 14.7 Summary and Future Perspectives | 395 | | 11. Oral Absorption Basics: Pathways and | | References | 395 | | Physicochemical and Biological Factors Affecting | | | 1, 183 | | Absorption | | | | | acr. It is | | 15. Predictive Biopharmaceutics and | | | L. ZHU, L. LU, S. WANG, J. WU, J. SHI, T. YAN, C. XIÈ, Q. LI, | | Pharmacokinetics: Modeling and Simulation | | | M. HU AND Z. LIU | | | | | 11.1 Barriers to Oral Drug Delivery | 297 | Y. YANG, Y. ZHAO, J.Z. DUAN, P. ZHAO, L. ZHAO AND X. ZHANG | | | 11.2 Pathways of Drug Absorption | 298 | 15.1 Introduction | 399 | | 11.3 Pathways of Drug Metabolism | 307 | 15.2 Modeling and Simulation Approaches for | 339 | | 11.4 Pathways of Drug Elimination | 312 | Biopharmaceutics and PK | 400 | | 11.5 Coupling of Enzymes and Efflux Transporters | 315 | 15.3 Application of Biopharmaceutics and PK Modeling | 100 | | 11.6 Regulation of Transporters and Enzymes by Nuclear | | and Simulation in Drug Development | 407 | | Receptors will be a supplied to the t | 319 | 15.4 Application of Biopharmaceutics and PK Modeling | 4 0. | | 11.7 Physicochemical Factors Affecting Drug Absorption | 321 | and Simulation in Regulatory Activities | 408 | | 11.8 Biological Factors Affecting Drug Absorption | 323 | 15.5 Summary | 409 | | References | 325 | References | 409 | | | CONT | TENTS | ix | |---|--|---|--| | 16. In Vitro/In Vivo Correlations: Fundamentals, Development Considerations, and Applications Y. QIU AND J.Z. DUAN | | 19. Rational Design of Oral Modified-Release Drug Delivery Systems Y. QIU AND P.I. LEE | | | 16.1 Introduction 16.2 Development and Assessment of an IVIVC 16.3 Considerations in IVIVC Development 16.4 IVIVC Development Approach 16.5 Applications and Limitations 16.6 Case Studies 16.7 Summary References | 415
416
430
435
439
441
447 | 19.1 Introduction 19.2 Oral MR Technologies and Drug Delivery Systems 19.3 Rational Design of Modified Release Systems 19.4 Summary References 20. Product and Process Development of Solid Oral Dosage Forms | 519
521
538
550
550 | | | | Y. QIU, X. HE, L. ZHU AND B. CHEN | | | DESIGN, DEVELOPMENT AND SCALE-UP OF FORMULATION AND MANUFACTURING PROCES | S | 20.1 Introduction 20.2 Development of Solid Dosage Forms 20.3 Technology Transfer 20.4 Case Studies 20.5 Intellectual Property Considerations 20.6 Summary References | 555
556
574
578
587
588
589 | | 17. Oral Formulations for Preclinical Studies: Principle, Design, and Development Consideration Y. GAO, C. GESENBERG AND W. ZHENG | ns | 21. Analytical Development and Validation for Solid Oral Dosage Forms | | | 17.1 Introduction 17.2 Considerations in Designing Formulations for
Preclinical Species 17.3 Use of API Properties to Guide Formulation Design 17.4 Formulations for BCS Class I/III Compounds 17.5 Formulations for BCS Class II/IV Compounds Using
Enabling Technologies 17.6 Evaluating Formulation Performance by In Vitro
Dissolution 17.7 Rationale Selection of Formulations Suitable for
Intended Studies 17.8 Case Study Acknowledgments References | 455
456
460
463
465
482
486
488
491
491 | X.(E) FANG, G. CARR AND R.C. FREEZE 21.1 Analytical Method Development and Validation Strategy 21.2 Category of Analytical Method and Method Development 21.3 Analytical Method Validation 21.4 Method Transfers 21.5 Case Studies 21.6 Conclusions References 22. Statistical Design and Analysis of Long-Term Stability Studies for Drug Products | 593
595
597
606
607
610 | | 18. Rational Design for Amorphous Solid | × (| D. LEBLOND | | | Dispersions A. NEWMAN 18.1 Introduction 18.2 Key Components of Amorphous Solid Dispersions 18.3 Characterization of Amorphous Dispersions 18.4 Screening and Selection of Amorphous Solid Dispersions 18.5 Stability Considerations 18.6 Solubility and Dissolution Considerations | 497
497
499
501
504
505 | 22.1 Stability Study Objectives 22.2 Regulatory Guidance 22.3 Test Methods and Data Management 22.4 Modeling Instability 22.5 Long-Term Stability Study Design 22.6 Determination of Shelf Life 22.7 Release Limit Estimation 22.8 Probability of Future OOS Stability Test Results Appendix A Sample Data References | 613
613
614
615
618
625
628
629
634
634 | | 18.7 Methods of Manufacturing Amorphous Solid Dispersions | 507 | 23. Packaging Selection for Solid Oral Dosage For | ms | | 18.8 Dosage Form Development Considerations18.9 Case Studies18.10 ConclusionsReferences | 509
509
515
515 | Y. CHEN 23.1 Introduction 23.2 Material Considerations | 637
638 | | x | CONTENTS | | | | |---|---------------------------------|--|--------------------------|--| | 23.3 Linking Packaging Property With Drug Property 23.4 Postapproval Packaging Changes References | 646
649
650 | 27.2 Gelatin and Capsule Shell Composition27.3 Capsule Shell Manufacturing27.4 Alternatives to Gelatin27.5 Hard Shell | 725
729
730
731 | | | 24. Clinical Supplies Manufacture: Strategy, GMP Considerations, and Cleaning Validation B.W. PACK, S. STITHIT AND W. CHEN | | 27.6 Capsule Filling27.7 Capsule Formulation Requirements27.8 Capsule FormulationsReferences | 734
740
744
746 | | | 24.1 Introduction 24.2 Strategy of Clinical Supplies Manufacture 24.3 Clinical Plan 24.4 Clinical Supplies Liaison 24.5 Lean Manufacturing 24.6 Company Lean Manufacturing | 653
653
654
655
655 | 28. Design, Development, and Scale-Up of the High-Shear Wet Granulation Process S. BADAWY AND P. PANDEY | | | | 24.6 Cross-Functional Training | 657 | 28.1 Introduction | 749 | | | 24.7 Outsourcing of Manufacturing and Packaging | 658 | 28.2 Rate Processes in Wet Granulation | 751 | | | 24.8 New Technology 24.9 GMP Considerations on Manufacturing Clinical | 658 | 28.3 Material Properties in Wet Granulation28.4 Design of the Pharmaceutical Wet Granulation | 753 | | | Supplies 24.10 Cleaning Validation and Validation | 660 | Process | 757 | | | 24.10 Cleaning Validation and Verification24.11 Case Study24.12 Summary | 664
672 | 28.5 Quality Attributes of Wet Granulated Products28.6 Scale-Up of the High-Shear Wet Granulation | 760 | | | Acknowledgments | 674 | Process | 764 | | | References | 674 | 28.7 Modeling and Simulation in High-Shear Wet | | | | A Controlled | 674 | Granulation | 769 | | | | | 28.8 Summary | 772 | | | 25. Specification Setting and Manufacturing Procedentrol for Solid Oral Drug Products | SS | References | 772 | | | W. CHEN, S. STITHIT AND J.Y. ZHENG | | 20 P P 1 | | | | W. CHEN, S. STITHIT AND J.I. ZHENG | | 29. Process Development, Optimization, and | | | | 25.1 Introduction | 677 | Scale-Up: Fluid-Bed Granulation | | | | 25.2 Specifications for the Drug Substance | 678 | K. YAMAMOTO AND Z.J. SHAO | | | | 25.3 Specifications for Clinical Trial Materials | 682 | 29.1 Overview of the Fluid-Bed Granulation Process | 777 | | | 25.4 Specifications for Commercial Drug Products | 684 | 29.2 Equipment Design | 777 | | | 25.5 Process Control for Solid Oral Drug Products | 687 | 29.3 Fluid-Bed Hydrodynamics | 777 | | | 25.6 Analytical Procedures | 691 | 29.4 Mechanisms of Agglomeration | 781 | | | 25.7 Conclusions | 692 | 29.5 Formulation and Process Variables and Their | 783 | | | Acknowledgments | 692 | Control | 704 | | | References | 692 | 29.6 Scale-Up Considerations | 784 | | | | | 29.7 Application of Quality-by-Design to Fluid-Bed | 786 | | | 26 P. P. R. D. Levesoubord moderate submic village | | Granulation Guanty-by-Design to Fluid-bed | 700 | | | 26. Process Development, Optimization, and | | 29.8 Summary | 790 | | | Scale-Up: Providing Reliable Powder Flow and Product Uniformity | | References File & Bur Argon M. And Argon S. F. Lines | 790
791 | | | T. BAXTER AND J. PRESCOTT | | | | | | | | 30. Formulation, Process Development, and | | | | 26.1 Introduction | 695 | Scale-Up: Spray-Drying Amorphous Solid | | | | 26.2 Common Powder Handling Equipment | 698 | Dispersions for Insoluble Drugs | | | | 26.3 Typical Flow and Segregation Concerns | 702 | A second compared to the second control of t | | | | 26.4 Measurement of Flow Properties | 707 | B. VIG AND M. MORGEN | | | | 26.5 Basic Equipment Design Techniques | 716 | 30.1 Introduction | 702 | | | References | 722 | 30.2 Background | 793 | | | | | 30.3 SDD Formulation Composition | 793 | | | an a little and a second little | | 30.4 SDD Process Considerations: Manufacturing and | 795 | | | 27. Capsules Dosage Form: Formulation and | | Scale-Up | 002 | | | Manufacturing Considerations | | 30.5 SDD Characterization | 803 | | | S.W. HOAG | | | 809 | | | o. w. Horio | | 30.6 Dosage Form Considerations | 815 | | | 27.1 Introduction—Capsules as a Dosage Form | 723 | 30.7 Concluding Remarks | 817 | | | Supodies as a Dosage Politi | 143 | References | 818 | | | CONTENTS | *** | |----------|-----| | CONTENTS | X1 | | | CONT | EN15 | XI | |---|---|--|--| | 31. Process Development and Scale-Up:
Twin-Screw Extrusion | | 34. Development, Optimization, and Scale-Up of Process Parameters: Pan Coating | | | B. CHEN, L. ZHU, F. ZHANG AND Y. QIU | | S. PORTER, G. SACKETT AND L. LIU | | | 31.1 Introduction 31.2 Twin-Screw Extruder and Extrusion Process 31.3 Hot-Melt Extrusion 31.4 Continuous Granulation Using a Twin-Screw Extruder 31.5 Process Scale-Up 31.6 Case Studies 31.7 Summary References | 821
822
835
842
853
860
865
865 | 34.1 Introduction 34.2 Film-Coating Formulations 34.3 Design and Development of Film-Coating Processes 34.4 Troubleshooting 34.5 Consideration of Product Substrate 34.6 Coating Formulation 34.7 Application of Systematic and Statistical Tools for Trouble Shooting and Process Optimization References | 953
954
966
986
987
988
993 | | 32. Development, Scale-Up, and Optimization of Process Parameters: Roller Compaction | | 35. Development, Optimization, and Scale-Up of Process Parameters: Wurster Coating | | | Theory and Practice | | D. JONES AND E. GODEK | | | J.M. ROWE, S.T. CHARLTON AND R.J. McCANN 32.1 Introduction 32.2 In-Process Analytical Characterization Tools 32.3 Roller Compaction Models 32.4 Approaches to Developing a Roller Compaction Process 32.5 Illustrative Example Detailing the Typical Drug Product Development Process for a Roller Compacted Product 32.6 Scale-Up Considerations of Roller Compaction 32.7 Illustrative Example Detailing a Possible Approach to Scaling-Up a Roller Compaction Process 32.8 Trouble-Shooting 32.9 Conclusions References 33. Development, Optimization, and Scale-Up of Process Parameters: Tablet Compression D. NATOLI, M. LEVIN, L. TSYGAN AND L. LIU | 869
877
889
903
906
907
909
912
912
912 | 35.1 Introduction 35.2 Basic Design 35.3 HS Wurster Considerations 35.4 Coating and Process Characteristics 35.5 Processing Examples 35.6 Process Variables 35.7 Case Studies for Layering and Fine Particle Coating 35.8 Scale-Up of Wurster Processing 35.9 Summary 36. Commercial Manufacturing and Product Qual D.Y. PENG, Y. HU, S. CHATTERJEE AND D. ZHOU 36.1 Introduction 36.2 Process Design, Understanding, and Control Strategy Development 36.3 Process Scale-Up, Technology Transfer, and Process Qualification 36.4 Continued Process Verification 36.5 Summary References | 997
997
999
1000
1000
1002
1005
1009
1014
ity
1015
1016
1017
1020
1028
1029 | | 33.1 Introduction 33.2 Operation Principles of Compression by Rotary Press 33.3 Tool Design 33.4 Tablet Designs 33.5 Care of Punches and Dies 33.6 Tooling Inspection 33.7 Tooling Reworking 33.8 Press Wear 33.9 Purchasing Tablet Compression Tooling 33.10 Consideration of Tooling 33.11 Application of Quality by Design and Tools (Case Study) 33.12 Scale-Up of Compression | 917
917
917
929
936
936
937
937
937
938
940
950 | 37. Emerging Technology for Modernizing Pharmaceutical Production: Continuous Manufacturing T. O'CONNOR AND S. LEE 37.1 Introduction 37.2 Challenges for Pharmaceutical Manufacturing 37.3 The Adoption of Emerging Technology to Address Pharmaceutical Manufacturing Challenges 37.4 Technologies for Continuous Drug Product Manufacturing 37.5 Challenges in Implementing Continuous Manufacturing 37.6 Conclusion References | 1031
1032
1034
1043
1044
1044 | | 32.5 Illustrative Example Detailing the Typical Drug Product Development Process for a Roller Compacted Product 32.6 Scale-Up Considerations of Roller Compaction 32.7 Illustrative Example Detailing a Possible Approach to Scaling-Up a Roller Compaction Process 32.8 Trouble-Shooting 32.9 Conclusions References 33. Development, Optimization, and Scale-Up of Process Parameters: Tablet Compression D. NATOLI, M. LEVIN, L. TSYGAN AND L. LIU 33.1 Introduction 33.2 Operation Principles of Compression by Rotary Press 33.3 Tool Design 33.4 Tablet Designs 33.5 Care of Punches and Dies 33.6 Tooling Inspection 33.7 Tooling Reworking 33.8 Press Wear 33.9 Purchasing Tablet Compression Tooling 33.10 Consideration of Tooling 33.11 Application of Quality by Design and Tools (Case Study) 33.12 Scale-Up of Compression | 906
907
909
912
912
912
917
917
917
929
936
936
937
937
937
938
940 | 35.7 Case Studies for Layering and Fine Particle Coating 35.8 Scale-Up of Wurster Processing 35.9 Summary 36. Commercial Manufacturing and Product Qual D.Y. PENG, Y. HU, S. CHATTERJEE AND D. ZHOU 36.1 Introduction 36.2 Process Design, Understanding, and Control Strategy Development 36.3 Process Scale-Up, Technology Transfer, and Process Qualification 36.4 Continued Process Verification 36.5 Summary References 37. Emerging Technology for Modernizing Pharmaceutical Production: Continuous Manufacturing T. O'CONNOR AND S. LEE 37.1 Introduction 37.2 Challenges for Pharmaceutical Manufacturing 37.3 The Adoption of Emerging Technology to Address Pharmaceutical Manufacturing Challenges 37.4 Technologies for Continuous Drug Product Manufacturing 37.5 Challenges in Implementing Continuous Manufacturing 37.6 Conclusion | | xii CONTENTS IV 39.3 Evolution of the Drug Substance Review Process 1080 39.4 Quality Assessment for Drug Substances 1081 REGULATORY ASPECTS OF PRODUCT 39.5 Conclusion 1090 Appendix QbR Questions—Drug Substance 1091 DEVELOPMENT References 1092 40. Modern Pharmaceutical Regulations: Quality 38. Drug Product Approval in the United States and International Harmonization Assessment for Drug Products J.A. MAGUIRE, W. JIANG AND L.X. YU L. WU, H. SMITH, H. ZHENG AND L.X. YU 40.1 Introduction 1095 38.1 Drug Product Approval and the US Food and Drug 40.2 QbR History 1095 Administration 1049 40.3 Current Status of QbR 1096 38.2 The New Drug Application Process 1055 38.3 The Abbreviated New Drug Application Process 1064 40.4 QbR Questions 1097 40.5 Future Direction 38.4 The Biologic License Application Process 1069 1121 38.5 Postapproval Activities and Life Cycle Management 40.6 Conclusions 1122 Appendix: QbR Questions 1122 of NDAs, ANDAs, and BLAs 1071 References 1124 38.6 Global Perspectives on Product Registration and 1072 Drug Approval Acknowledgments 1074 References 1074 Index 1127 ## 39. Modern Pharmaceutical Regulations: Quality Assessment for Drug Substances H. ZHANG, D. JOHNSON, D. SKANCHY AND L.X. YU | 39.1 Introduction | 1079 | |------------------------|------| | 39.2 Origin of the ObR | 1080 |